(In Canada) (In US)

2343 Brimley Road 1032 Serpentine Lane
Suite 868 Suite 113
Toronto, Ontario M1S 3L6 Pleasanton, CA 94566

CANADA USA
Tel: 1-416-840 4991 Tel: 1-925-218 1885
Simply Brighter Fax: 1-416-840 6541 Email: sales@mightex.com

Mightex Spectrometer

Software Engine SDK
Manual

Version 2.4.0

Dec, 2022

Relevant Products

Part Numbers
SSE-1304-U

Revision History

Revision Date Author Description
1.0.0 Sept. 28, 2009 JT Zheng Initial Revision
1.0.1 Oct. 10, 2009 JT Zheng RRC/ETC enable
1.0.2 Oct. 20, 2009 JT Zheng GPIO APIs added
1.0.3 Nov. 23, 2009 JT Zheng Correct GPIO API Name typo
2.0.0 Jan.11.2011 S.S.D Add function to get frame data and its
property.
2.0.1 Oct.11.2013 S.S.D Add callback function to get frame data
2.0.2 Nov.22 2013 S.S.D Add two manual get functions
222 0c.2018 S.S.D Update to support Bioscience functions
2.3.1 Sep. 2020 S.S.D Update black field data handling algorithm.
2.4.0 Dec.2022 William Modify black field data handling algorithm.

Update calib para file format.
Improve ETC algorithm.

Mightex USB 2.0 CCD spectrometer is designed for low cost spectrum applications, With USB 2.0 high
speed interface and powerful PC software engine, the device delivers spectrum at high frame rate. SSE Application
software is provided for user’s quick operations, In addition, SDK is also provided for user’s developments.

IMPORTANT:

Mightex USB spectrometer is using USB 2.0 for data collection, USB 2.0 hardware MUST be present on
user’s PC and Mightex device driver MUST be installed properly before developing application with SDK. For
installation of Mightex device driver, please refer to Mightex Spectrometer User Manual.

SDK FILES:
The SDK includes the following files:

\Library directory has two sub directories x86 and x64, each directory contains the following files:

MT_Spectrometer SDK.h --- Header file which contains “C” prototypes of the APIs
MT Spectrometer SDK.lib --- lib file for APIs.

MT Spectrometer SDK.dII --- DLL file exports APIs.

CCD_USBCamera SDK.dII --- DLL file used by “MT_Spectrometer SDK.dII”.
LE_Colorimetry.dll --- DLL file used by “MT _Spectrometer SDK.dII”.
LinearCameraUsblib.dll --- DLL file used by “MT_Spectrometer SDK.dII”.

\Documents directory:
Mightex SSE SDK Guide.pdf

\Examples directory
\Delphi --- This directory contains x86 and x64 Delphi project example.
\WC++ --- This directory contains x86 and x64 VC++ example code
\Labview --- Labview example code

Important: When a spectrometer is shipped from factory, The CD ROM contains “\Application” directory which has
the following contents:
\Application
It has EXE file named “Mightex SSE_App.exe” and related DLL files, and two pre-defined sub-directories
as following:
\Appdata : it has five pre-defined files and one pre-defined sub-directory.
Para.ini : Main Parameter file for SSE.
Pixelmode.ini : Parameter file for SSE
WavelengthSets.ini : Pre-defined wavelength sets.
CalibrationFilel.cal : Example of calibration file.
ImportFilel.mtp : Example of import file.
\ModuleNo_SerialNo : This is a sub-directory which includes calibration file ‘ModuleNo_SerialNo’.cal, which is
generated in factory when the device is calibrated.
\Data : This is an empty sub-dir, user might put spectrum data files under it, for example, user can use it as “Time
line” save/load path.

When user develops his own application with spectrometer engine (the DLLs), user should copy all the DLL files (in
Library directory) into user’s own application’s directory, and user should also copy whole “\appdata” directory (and
all the files, sub-directory under it) into this directory (the same directory as the DLLs), thus the DLLs can find these
files to get all necessary information (e.g. calibration data).

Please refer to the example codes (Delphi, VC++ or LabView) for user applications.

Note

1).The spectrometer engine supports Multiple devices, while allows operation on ONLY ONE device at a time. User
may invoke functions to get the number of SSE devices currently present on USB and each device's module no. and

serial no., and select one of the devices as “Working Device” which is activated for user to acquire spectrum from it.
While user wants to set another device as “Working Device”, user should stop the devices.

The following procedure demonstrates this process:

MTSSE_InitDevice;
MTSSE_GetDeviceModuleNoSerialNo;
MTSSE_SetDeviceActiveStatus; // User select one device as current “Working Device”

(Operations on the active spectrometer, such as set work mode, set exposure time, grabbing spectrum,
etc.)

MTSSE_UnlInitDevice;

2)Although spectrometer are USB Devices, spectrometer engine is NOT supporting Plug&Play of the spectrometers,
it’s NOT recommended to Plug or Unplug spectrometer while the camera engine is grabbing frames from the cameras.

3). The code examples are for demonstration of the DLL functions only, device fault conditions are not fully handled in
these examples, user should handle those error conditions properly.

HEADER FILES:
The content of “MT_Spectrometer SDK.h” is as following:

typedef int SDK_RETURN_CODE;
typedef unsigned int DEV_HANDLE;

#ifdef SDK_EXPORTS

#define SDK_API extern "C" __ declspec(dllexport) SDK_ RETURN CODE _cdecl
#define SDK_ HANDLE_ API extern "C" __declspec(dllexport) DEV_HANDLE _cdecl
#define SDK_POINTER_API extern "C" __ declspec(dllexport) unsigned short * _cdecl
felse

#define SDK_API extern "C" __declspec(dllimport) SDK_RETURN_CODE _cdecl
#define SDK_HANDLE_API extern "C" __declspec(dllimport) DEV_HANDLE _cdecl
#define SDK_POINTER_API extern "C" _ declspec(dllimport) unsigned short * _cdecl
#endif

typedef struct
!

1
double* RawData;
double* CalibData;
double* Abslnten;

JtFrameRecord;

typedef struct
f
s
int DevicelD;
int ExposureTime;
int TimeStamp;
int TriggerOccurred;
int TriggerEventCount;
int OverSaturated;
int LightShieldValue;
} TFrameDataProperty;

typedef void (* DeviceFrameDataCallBack)(int Row, int Col,
TFrameDataProperty* Attributes, void **FramePtr);

SDK_API MTSSE _InitDevice(HWND ParentHandle);

SDK_API MTSSE_UnlnitDevice(void);

SDK_API MTSSE_GetDeviceModuleNoSerialNo(int DevicelD, char* ModuleNo, char* SerialNo);

SDK_API MTSSE_GetDeviceSpectrometer WavCalPara(int DevicelD, int SpectrometerID, double*
&WavCalibValue);

SDK_API MTSSE_SetDeviceActiveStatus(int DevicelD, int ActiveFlag);

SDK_API MTSSE InstallDeviceFrameHooker(int DevicelD, DeviceFrameDataCallBack DeviceHookerProc);
SDK_API MTSSE_SetDeviceAverageFrameNum(int DevicelD, int AverageFrameCount);

SDK_API MTSSE_SetDeviceWorkMode(int DevicelD, int WorkMode);

SDK API MTSSE SetDeviceExposureTime(int DevicelD, int ExposureTime);

SDK API MTSSE StartFrameGrab(int GrabType);

SDK_API MTSSE_StopFrameGrab(void);

SDK_API MTSSE_SetDeviceSpectrometerAutoDarkStatus(int DevicelD, int SpectrometerID, int AutoDrkFlag);
SDK API MTSSE SetDeviceSpectrometerETCStatus(int DevicelD, int SpectrometerID, int ETCFlag);
SDK_API MTSSE_SetDeviceSpectrometerDarkData(int DevicelD, int SpectrometerID, double *DarkData);
SDK_API MTSSE_GetDeviceSpectrometerFrameDataEx (int DevicelD, int SpectrometerID, int WaitUntilDone, int
Datalndex, double *Data);

SDK API MTSSE GetDeviceSpectrometerFrameData(int DevicelD, int SpectrometerID, int WaitUntilDone,
tFrameRecord* &FrameData);

SDK API MTSSE GetDeviceSpectrometerFrameDataProperty(int DevicelD,int SpectrometerID,int
WaitUntilDone, TFrameDataProperty* FrameProperty.tFrameRecord* &FrameData);

SDK_API MTSSE SaveDeviceSpectrometer WavCalPara(int DevicelD, int SpectrometerID, double*
WavCalibArray);//

SDK API MTSSE GetDeviceSpectrometerCIE1931Coords(int DevicelD, int SpectrometerID, double* FrameData,
double &x, double &y);

SDK_API MTSSE_GetDeviceSpectrometerCIE1976Coords(int DevicelD, int SpectrometerID, double* FrameData,
double &u, double &V);

SDK_API MTSSE_GetDeviceSpectrometerCCT(int DevicelD, int SpectrometerID, double* FrameData, int &CCT);
SDK_API MTSSE_GetDeviceSpectrometerCRIs(int DevicelD, int SpectrometerID, double* FrameData, double
*CRls);

SDK_API MTSSE_SetDeviceGPIOConfig(int DevicelD, int Config);

SDK_ API MTSSE SetDeviceGPIOInOut(int DevicelD, int Output, unsigned char *Input);

Note: Please check the header file itself of latest information, we may add functions from time to time.

EXPORT Functions:

SDK_API MTSSE_InitDevice(HWND ParentHandle);

This is first function user should call for his own application, this function communicates with the installed device
driver and reserve resources for further operations.

Arguments: PAHandle — the handle of the parent window who invokes the engine, when there’s no parent window, it
can be set to NULL.

Return: The number of SSE device currently attached to the USB 2.0 Bus, indexing from 1. If there’s no Mightex
USB spectrometer device attached, the return value is 0.

Note: There’s NO device handle needed for calling further spectrometer related functions, after invoking
MTSSE_ InitDevice, camera engine reserves resources for the attached devices. For example, if the returned
value is 2, which means there are TWO devices currently present on USB, user may use “1” or “2” as DevicelD
to call further device related functions, “1” means the first device and “2” is the second device, etc.

SDK_API MTSSE_UnlInitDevice(void);

This is the function to release all the resources reserved by MTSSE_ InitDevice, user should invoke it before
application terminates or before recalling the MTSSE_InitDevice.

Arguments: None

Return: Always return 1.

SDK_API MTSSE_InstallDeviceFrameHooker(int DevicelD, DeviceFrameDataCallBack DeviceHookerProc);
Argument: DevicelD — the index of the device, Please refer to the notes of MTSSE_InitDevice() function
DeviceHookerProc — Callback function installed.

Return: -1 if the function failes.

1 if the function succeeds.
Note: 1) The callback function will only be invoked while the frame grabbing is started, host will be notitied every
time the spectrometer get a new frame.
2) The callback has the following prototype:

typedef void (* DeviceFrameDataCallBack)(int Row, int Col, TFrameDataProperty* Attributes, void **FramePtr);

The TFrameDataProperty is defined as
typedef struct
{
int DevicelD;
int ExposureTime;
int TimeStamp;
int TriggerOccurred;
int TriggerEventCount;
int OverSaturated;
int LightShieldValue;
} TFrameDataProperty;
Here, DevicelD — This is the spectrometer’s index (1 based), which identifies the spectrometer who generates the
frame.
ExposureTime — This is the exposure time of current frame, in second based.
TimeStampe — Spectrometer firmware will mark each frame with a time stamp, a number ranging from 0 -
65335(and it’s automatically rounded back) which is generated by the internal timer, the unit of it is of 100us.
TriggerOccurred — While the spectrometer is in NORMAL mode, the spectrometer firmware will keep
record if an external trigger signal is asserted. If an external signal is captured, the spectrometer firmware will set this
flag to one, otherwise it is zero.

TrigerEventCount — While the spectrometer is in TRIGGER mode, the spectrometer will only grab frame
based on the external trigger signal. Each trigger will increase this count by ONE. Note that this count is reset to ZERO
whenever host set the spectrometer work mode to TRIGGER mode.

OverSaturated — A flag to show if there is data saturation happened. The CCD sensor only works properly
under conditional lighting, if it’s over exposured, the CCD will be over saturated and in this case, the frame data
grabbing back doesn’t make sense, as the electronics accumulated for a frame is NOT released completely and
accumulatively affects the next frame. While this flag is set to 1, host should reduce the exposure time (or setting
proper external lighting condition) to make it back to 0.

LightShiedValue - The CCD provides 13 pixels with Light shielded, this field provides an average

value of these pixels, user might use this value for black compensation.

Note: 1) The impact of AverageFrameCount on frame data property.
When the frame data is an averaging result(AverageFrameCount > 1),
TriggerOccured, any external trigger is asserted during any frame will set this flag to ONE.
TriggerEventCount is the total count of trigger event from all frames.
OverSaturated, if any data of any frame is saturated will set this flag to ONE.
LightShieldValue, is the averaging result of LightShieldValue of all frames on AverageFrameCount.

The Arguments of call back functions:

Row,Col — the row and column size of a frame, for linear spectrometer, the ROW = 1, and Col is the linear CCD
pixels count, please refer to the Spectrometer’s specification.

FramePtr - the pointer to address of frame structure, which is defined as

typedef struct

f
1§

double* RawData;
double* CalibData;
double* Abslnten;
}tFrameRecord;
Note: Each frame is comprised of three data structure, rawData, CalibData and AbsInten Data. The length of each data
structure is the frame column size, please refer to the Spectrometer’s specification for linear CCD’s line pixel count.

SDK_API MTSSE_StartFrameGrab(int GrabType)
For getting a spectrum from the device, user should invoke this function first, followed by the following
MTSSE_GetDeviceSpectrometerFrameData (). When this function is invoked, the spectrometer engine will start to
grab AvgCnt spectrums (set by the AvgCnt, see MTSSE SetDeviceAverageFrameNum).
Arguments:

GrabType -- 1, get one frame.

-- 0x8888, get frames continuously until MTSSE_StopFrameGrab() is called.

Return: Always return 1.
Important: As it might take considerable time to get a spectrum (which depends on the exposure time ExpTime and
AvgCnt set by user), this function will return immediately before the spectrum is grabbed, user might do something
else and then invoke the following MTSSE_ GetDeviceSpectrometerFrameData (), to check to see whether the
spectrum is ready.

SDK_API MTSSE_StopFrameGrab(void);

This function is called to stop grabbing frame when GrabType in SDK_API MTSSE_StartFrameGrab is 0x8888.
Arguments: None.

Return: Always return 1

SDK_API MTSSE_GetDeviceModuleNoSerialNo(int DevicelD, char *ModuleNo, char *SerialNo)
For a present device, user might get its Module No. and Serial No. by invoking this function.
Argument: DevicelD — the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
ModuleNo — the pointer to a character buffer, the buffer should be available for at least 16 characters.
SerialNo — the pointer to a character buffer, the buffer should be available for at least 16 characters.
Return: -1, if the function fails (e.g. invalid DevicelD)
1, if the call succeeds.

SDK_API MTSSE_SetDeviceActiveStatus(int DevicelD, int ActiveFlag) ;
Currently connected devices can be turn on/off by this function. The default state of device is off; User should invoke
this function to set the device to active state for further operation.
Arguments: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
ActiveFlag -- 1: Set device to active status.
0: Set Device to inactive status.
Return: -1, if the function fails (e.g. Invalid device number).
1, if the function succeeds.

SDK_API MTSSE_SetDeviceWorkMode(int DevicelD, int WorkMode);
This function set work mode to the device specified by DevicelD.

By default, the device is working in “NORMAL” mode in which device can deliver spectrum to PC by software
commands, however, user may set it to “TRIGGER” Mode, in which the device is waiting for an external trigger
signal and capture ONE spectrum for each trigger signal assertion.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
WorkMode — 0: NORMAL Mode, 1: TRIGGER Mode.
Return: -1, if the function fails (e.g. invalid DevicelD)
1, if the call succeeds.

SDK_API MTSSE_SetDeviceExposureTime(int DevicelD, int ExposureTime);

User may set the exposure time of the device specified by DevicelD.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
ExposureTime -- the Exposure Time to be set, note it’s in “Microsecond”, and as the Spectrometer’s
minimum resolution for exposure is 100us, so it should be multiple of 100us (including 100us).
Return: -1 If the function fails (e.g. invalid DevicelD)
1 if the call succeeds.

SDK_API MTSSE_SetDeviceAverageFrameNum(int DevicelD, int AverageFrameCount) ;
User may use this function to set average frame number of device specified by DevicelD.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
AverageFrameCount— the average frame count- AvgCnt.
Return: -1 if the function fails (e.g. invalid DevicelD or AverageFrameCount < 0).
1 if the call succeeds.

SDK_API MTSSE_SetDeviceSpectrometerAutoDarkStatus(int DevicelD, int SpectrometerlID,
int AutoDrkFlag) ;
User may use this function to set status of “Dark compensation” of the current spectrometer, please refer to SSE User
manual for the detailed description of “Dark Compensation™ function.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.
AutoDrkFlag— the dark compensation status.
1: set the auto dark compensation to true.
0: set the auto dark compensation to false.
Return: -1 if function fails.
1 if function succeeds.
Note: The SpectrometerID should always be set to 1.

SDK_API MTSSE_SetDeviceSpectrometerETCStatus(int DevicelD, int SpectrometerID, int ETCFlag) ;
If ETC calibration file for the target spectrometer exists, User may use this function to set status of “ETC
compensation” of the current spectrometer, please refer to SSE User manual for the detailed description of “ETC
Compensation” function.
Arguments: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.
ETCFlag — the status of ETC to be set.
1: sets the ETC Compensation to true.
0: sets the ETC Compensation to false.
Return: -1, if function fails, e.g., ETC calibration file does not exist or has not been located.
1, if function succeeds.

SDK_API MTSSE_GetDeviceSpectrometerFrameData(int DevicelD, int SpectrometerID, int WaitUntilDone,
tFrameRecord* &FrameData);
After sending the above MTSSE_StartGrabSpectrum() command, user can invoke this function to check whether the
spectrum is ready and to get the spectrum.
Arguments: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.

FrameRecordData - the pointer to the spectrum data structure if spectrum is ready or nil if spectrum is not
ready. It is defined as:

typedef struct
s

?
double* CCDData;

double* CalibData;
double* AbsIntenData
JtFrameRecord;

And each item again should points to a double data array which defined as double data[3648].

CCDData is the raw pixel data,

CalibData is the CCDDataa with ETC calibration (if etc flag was turned on), if ETC is off; it should equal the
CCDData.

AbsIntenData returns the absolute intensity data if AIC coefficients exists

WaitUntilDone — the frame grabbing process may need considerable time (depends on the exposure time

setting and average frame number setting). User might set:

1: The API will be blocked until the spectrum is grabbed, the returned spectrum is pointed by the
FrameRecordData, If the returned pointer is nil, “Time out™ error occurs.

0: The API will not be blocked, if the spectrum is ready, the spectrum will be returned in FrameRecordData),
otherwise, it will return nil.
Return: -1, if the grabbing command is not finished (when WaitUntilDone is “0”) or “Time out™ error occurs (when
WaitUntilDone is “17).

1, if function succeeds.

SDK_API MTSSE_GetDeviceSpectrometerFrameDataEx (int DevicelD, int SpectrometerID, int
WaitUntilDone, int Datalndex, double *Data);
This function behaves the same as MTSSE_GetDeviceSpectrometerFrameData , except for that this function can be
used to get any one of the three items in the FrameData by specifying Datalndex . The definition of arguments other
than Datalndex and Data are the same as the ones of MTSSE_GetDeviceSpectrometerFrameData, the other two are
listed as follows,
Arguments: Datalndex — can be of value 0, 1 or 2, used to specify the data item to get from last grabbing action.

Set Datalndex to 0 to get CCDData.

Set Datalndex to 1 to get CalibData,

Set Datalndex to 2 to get AbsIntenData.

Data — the pointer to the data array specified by Datalndex.
Return: -1, if the grabbing command is not finished (when WaitUntilDone is “0”) or “Time out™ error occurs (when
WaitUntilDone is “17).
1, if function succeeds.

SDK_API MTSSE_GetDeviceSpectrometerFrameDataProperty(int DevicelD,int SpectrometerID,int
WaitUntilDone, TFrameDataProperty* FrameProperty,tFrameRecord* &FrameData);
This function behaves the same as MTSSE_GetDeviceSpectrometerFrameData, except for that this function can also
get the frame data property when getting the frame data. The arguments other than FrameProperty can be found from
previous function.
Arguments: FrameProperty is defined as
typedef struct
f
s
int CameralD;
int ExposureTime;
int TimeStamp;
int TriggerOccurred;
int TriggerEventCount;
int OverSaturated;
int LightShieldValue;
} TFrameDataProperty;
See callback function for the frame data property.

SDK_API MTSSE_SetDeviceSpectrometerDarkData(int DevicelD, int SpectrometerID, double *DarkData);

When device is set to get the frame data, it will also calculate the absolute intensity data if wavelength calibration

coefficients were found and AIC coefficients were found. User might want to subtract the dark field light from the

current calculation. The function is used to set the dark data to be subtracted for absolute intensity calculation.

Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.

DarkData — The dark field data to be sent to the device. It should contain MAX_ CCD Points data. User can
use the data from GetDeviceSpectrometerFrameData.
Return: - 1 If the function fails.
1 If the function success.

SDK_API MTSSE_GetDeviceSpectrometerWavCalPara(int DevicelD, int SpectrometerID,
double* &WavCalibData);
User can use this function to view the saved wavelength calibration coefficients.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.
WavCalibData — which points to the spectrometer’s wavelength calibration coefficients data structure,
which is defined as

struct

double A[4];
double B[4];
};

Where A stores the pixel to wavelength coefficients and B stores the wavelength to pixel coefficients.

Return: -1 If the function fails
1 If the function success.

SDK_API MTSSE_SaveDeviceSpectrometerWavCalPara(int DevicelD, int SpectrometerlD,
double * WavCalibArray);

User can use this function to set the device wavelength calibration coefficients.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.

SpectrometerID — the index of the spectrometer, should always be set to 1.

WavCalibArray — the address of the valid wavelength calibration coefficients, which should be defined in
the above format.
Return: -1 if the function fails.

1 if the function success.

Note: When user use this function to set the new wavelength calibration coefficients, it is recommended to restart the
SSE engine.

SDK_API MTSSE_SetDeviceGPIOConfig(int DevicelD, int Config);
User may call this function to configure GPIO pins.
Argument : DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
Config— Only the 4 LSB are used, bit0 is for GPIOI1, bitl is for GPIO2 and so on. Set a certain bit to 0
configure the corresponding GPIO to output, otherwise it’s input.
Return: -1 If the function fails (e.g. invalid device number)
1 if the call succedds.

SDK_API MTSSE_SetDeviceGPIOInOut(int DevicelD, int Output; unsigned char *Input);
User may call this function to set GPIO output pin states and read the input pins states.
Argument : DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.

Output— Only the 4 LSB are used, bit0 is for GPIO1, bitl is for GPIO2 and so on. Set a certain bit
to 1 will output High on the corresponding GPIO pin, otherwise it outputs Low. Note that it’s only working for those
pins are configured as “Output”.

Input— the Address of a byte, which will contain the current Pin States, only the 4 LSB bits are used, note
that even a certain pin is configured as “output”, we can still get its current state.
Return: -1 If the function fails (e.g. invalid device number)handle or it’s camera WITHOUT GPI1O)
1 if the call succedds.

Note: See “Mightex Spectrometer User Manual” for GPIO connector definition.

SDK_API MTSSE_GetDeviceSpectrometerCIE1931Coords(int DevicelD, int SpectrometerlD,

double * FrameData, double &x, double &y);
SDK_API MTSSE_GetDeviceSpectrometerCIE1976Coords(int DevicelD, int SpectrometerID,

double * FrameData, double &up, double &vp);
User may call these two functions to get the CIE colorimetry coordinates .
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.

SpectrometerID — the index of the spectrometer, should always be set to 1.

FrameData — the address of the frame data to be sent to device for calculating the CIE colorimetry
coordinates. It should contain exact data points of the CCD points.

x ---- CIE 1931 colorimetry x coordinate;

y ---- CIE 1931 colorimetry y coordinate;

up ----CIE 1976 colorimetry u’ coordinate;

vp ----CIE 1976 colorimetry v’ coordinate.
Return: -1 if function fails.

1 if function succeeds.

Note: x,y,up and vp values are rounded to 4 digits after the decimal point.

SDK_API MTSSE_GetDeviceSpectrometerCCT(int DevicelD, int SpectrometerID, double * FrameData,
int &KCCT);

User may call this function to get the CIE CCT.
Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.

SpectrometerID — the index of the spectrometer, should always be set to 1.

FrameData — the address of the frame data to be sent to device for calculating the CIE CCT. It should
contain exact data points of the CCD points.

CCT —the returned CCT value.
Return: -1 when CCT calculation beyond the allowable area or

1 if function succeeds.

SDK_API MTSSE_GetDeviceSpectrometerCRIs(int DevicelD, int SpectrometerID, double * FrameData,
double *CRlIs);

User may use this function to get the CIE color rendering Indexes (CRI).

Argument: DevicelD -- the index of the device, Please refer to the notes of MTSSE_InitDevice() function.
SpectrometerID — the index of the spectrometer, should always be set to 1.
FrameData — the address of the frame data to be sent to device for calculating the CIE CCT. It should

contain exact data points of the CCD points.
CRIs — the address of the CIE color rendering indexes structure, which should be defined as

struct

{
double CRIa;
double CRIs[14];

Return: -1 If function fails.
1 If function success.

